libatomprobe
Library for Atom Probe Tomography (APT) computation
Classes | Namespaces | Functions
confidence.cpp File Reference
#include <algorithm>
#include <limits>
#include <cmath>
#include <vector>
#include <numeric>
#include "atomprobe/atomprobe.h"
#include "atomprobe/helper/aptAssert.h"
#include <gsl/gsl_cdf.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_histogram.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_roots.h>
Include dependency graph for confidence.cpp:

Go to the source code of this file.

Classes

struct  AtomProbe::ZECH_ROOT
 

Namespaces

 AtomProbe
 

Functions

template<class T , class T2 >
std::iterator_traits< T >::value_type AtomProbe::kahansum (T begin, T end, T2 other)
 
bool AtomProbe::numericalEstimatePoissRatioConf (float lambda1, float lambda2, float alpha, unsigned int nTrials, gsl_rng *r, float &lBound, float &uBound)
 Brute-force poisson ratio confidence estimator. Returns the confidence interval in the estimate of the mean, at the given rates. More...
 
bool AtomProbe::numericalEstimateSkellamConf (float lambda1, float lambda2, float alpha, unsigned int nTrials, gsl_rng *r, float &lBound, float &uBound)
 Brute-force the confidence bounds of a skellam distribution. More...
 
bool AtomProbe::numericalEstimateGaussRatioConf (float mu1, float mu2, float var1, float var2, float alpha, unsigned int nTrials, gsl_rng *r, float &lBound, float &uBound)
 Brute-force guassian ratio confidence estimator. More...
 
double AtomProbe::zechRoot (double sigGuess, void *params)
 
bool AtomProbe::zechConfidenceLimits (float lambdaBack, unsigned int observation, float alpha, float &estimate)
 Provides a best estimate for true signal when true signal, background. More...
 
template<class T >
void AtomProbe::cumTrapezoid (const vector< T > &x, const vector< T > &vals, vector< T > &res)
 
double AtomProbe::gauss_ratio_pdf (double x, double muX, double muY, double varX, double varY)
 
void AtomProbe::poissonConfidenceObservation (float counts, float alpha, float &lBound, float &uBound)
 Obtain poisson confidence limits for the mean of a poisson distribution. More...