| 
    libatomprobe
    
   Library for Atom Probe Tomography (APT) computation 
   | 
 

Go to the source code of this file.
Namespaces | |
| AtomProbe | |
Functions | |
| bool | AtomProbe::fitVoigt (const std::vector< double > &x, const std::vector< double > &y, double &sigma, double &gamma, double &mu, double &, bool autoInit=true) | 
| Fit a Voigt function to the given X/Y values. Internally, a function minimiser is used.  More... | |
| void | AtomProbe::voigtProfile (const std::vector< double > &x, double sigma, double gamma, double mu, double amp, std::vector< double > &y) | 
| Generate a shifted voigt profile.  More... | |
| bool | AtomProbe::fitDoniachSunjic (const std::vector< double > &x, const std::vector< double > &y, double &a, double &f, double &mu, double &, bool autoInit=true) | 
| Fit a Doniach-Sunjic curve.  More... | |
| void | AtomProbe::doniachSunjic (const std::vector< double > &x, double &a, double &F, double &mu, double &, std::vector< double > &y) | 
| generate a Doniach-Sunjic profile  More... | |
| bool | AtomProbe::fitLikeLogGaussian (const std::vector< double > &x, const std::vector< double > &y, double &lambda, double &sigma, double &xp, double &, double &h, bool autoInit=true) | 
| Fit a smoothed log-gaussian curve (arxiv:0711.4449)  More... | |
| void | AtomProbe::likeLogGaussian (const std::vector< double > &x, double &xp, double &sigma, double &lambda, double &, double &h, std::vector< double > &y) | 
| Generate a smoothed log-gaussian curve.  More... | |
| bool | AtomProbe::fitExpNorm (const std::vector< double > &x, const std::vector< double > &y, double &K, double &mu, double &sigma, double &, bool autoInit=true) | 
| Fit a smoothed log-gaussian curve (arxiv:0711.4449)  More... | |
| void | AtomProbe::expNorm (const std::vector< double > &x, double &K, double &mu, double &sigma, double &, std::vector< double > &y) | 
| Exponentially decaying normal distribution.  More... | |
| double | AtomProbe::lsq (const std::vector< double > &y, const std::vector< double > &yFit) | 
 1.8.13